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1. Theoretical Principles.

The plane motion of vehicle under the influence of the gravi-

tation of a single central body can, according to LEVO-CIVITA /1/ be

regularized by replacing the Cartesian coordinates xl, x2 of the plane

motion at the zero point of which the central body is situated by

parameters ul, u 2 , and the time by a transformed time according to

transformation equations

X- . - U sx2 = 2 u uu,, d = r ds (1)

where =xllj= + ure re is proportional to the increase of

eccentric anomaly of the vehicle.

If the vehicle moves in 3 dimensions, the ,' regularization, of

1)
Numbers in brackets refer to the bibliography, page 402 i ·ci-" 
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LEVI-CIVITA can be generalized /2/. In the following text we compile

the formulas of this method in the manner in which they have been

specially developed for the calculation of perturbation in /3/.

The physical space of coordinates x1, x2, x3, is mapped on a

4-dimensional ul, u2, u3, u4 according to the provision

x, = u' - us - u + u, x, = 2 (u,,- u , Xa, - 2(.1u, + u4):,.: ' (2)

For the radius vector we obtain

·x = (xl 4 xJ Is + x3)/ = + + , + t,-

Due to the difference of the dimensions of the xi,and the ui space,

the values of u. must satisfy the secondary condition

u4 du, -- u, d.,a + us d.t, - u, d, =o. (3)

This is the "spinor regularization" (in the following text called

the KS method) mentioned in the title.

The central body with a mass of M is located in the origin of

the x. space and the vehicle with vanishing mass is located at point

r = (X1 , x2 , X3,). In addition to the attraction of the central body,

a perturbing acceleration S shall effect the central body. Then the

equations of motion for the vehicle are
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ir=- r+ S. (4)

if one point describes the derivative with respect to t. The singu-

larity of the differential equation (4) in the ,i-origin disappears in

transformation by virtue of the transition toward the above-described

U
i
space and an appropriate new time variable s. Thus

u+ D'ug= 4 Si+ 2 (i=1.2,3.4)- (5)

or

s + o tin M (er +o (ud')e) (r Si + sDe e si U')
n2M -1 15

is obtained (for details see /3/.)

In (5)

(i= 1. 2, 3,4).' (6)

di = r ds = (us + u + U + fl) ds .,

a prime designates differentiation with respect to s, furthermore

4 M i
4 a "
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where a denotes the large semiaxis of the unperturbed vehicle orbit

which is osculatory at the time t = 0, S. are the components of the

perturbing acceleration in the u. space, and
1

f' Sidd d '
= work of the

perturbing
acceleration.

In (6) the time is transformed somewhat differently:

I (r i2 +, (aUp)] ds.- (7)

The remaining designations are the same as in (5)

Expression (5) is simpler, but requires an additional inte-

gration (for A); (6) fails in the case of a parabolic orbit of the

unperturbed mobil vehicle, since in that case the denominator

disappears.

The method of the perturbation theory consists in analytically

computing the unperturbed orbit of the vehicle, osculatory at the time

t = O (designated for brevity in the following text as the unperturbed

orbit), which is given by

(8,)
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and in integrating numerically only the small change of coordinates

u. with respect to the unperturbed orbit caused by the perturbation

force.

Laying down formula

;u =(. + 4ai) sin s+ (o + l) cosD s, =fj(ro+Ar) ds = t+ t , (9)

where the J- values designate the perturbation deviations, there is

obtained from (5) a system of 10 first-order differential equations

(4z)'= - -ii F sinDs (i= 3, 4)'

(pi)' - i -+ - F~ cos s (i = 1, 2, 3,4)

(At)' = dr
4

(10)

where i= r4 Si - ' A/2 Analogumusly, (6) yields 9 first-order differ-

J. ential equations

(doi)' - G sin Ds (i = 1 2,3,4)

4fi)P = + W G, cos Ds (i = 1, 2,3,4)

() =[ ( + )]ro.

(11)

where, accordingly, the values of G. are equal to the right-hand side

of (6). In order to test the above-described method in practice in

orbit calculations, it was programmed for an electronic computer; the
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the integration of differential equations (10) and (11) is carried out

by the 4th-order Runqe-Kutta method. Perturbation by a third body

and perturbation by the flattening of the central body were dealt with

as examples.

II. Perturbation by a Third Body

In addition to the central body with a mass of M and the vehicle,

a perturbation body with a mass of m1 shall be present. The pertur-

bation acceleration upon the vehicle then assumes the form of

A.='-m( _,-i +)

(12)

if rl designates the location of the perturbation body.

Since the vehicle is massless, the perturbation body describes

a Kepler orbit around M with the equation of motion

m, +M 

· ~.-- )(13)

In the program, the coordinate system xl, x2, x3 was so chosen that

the perturbation body remains in the xl, x2 plane and the large axis of

its orbit ellipse lies on the x1 axis. Then entering its mass, initial

position and eccentricity suffices for determination of its orbit. The

vehicle is entered in terms of its initial position and initial velocity

at time t = O. According to choice, the program intergrates system (10)

or (11), where the step width in s during integration is kept constant.

Due to the regularization, the ejection of the vehicle / from the central

body can also be treated; in this case, instead of the initial velocity
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the location of the point of reversal of the unperturbed vehicle orbit

is entered.

1. Example

Central body: earth, perturbation body: moon on circularIorbit.

As test, the motion was calculated of the vehicle which is located

in the Lagrage point L , and the initial velocity of which is perpendic-

ular to r and is equal to the moon velocity.

\ Vehicle

M = earth mass

ml= moon mass

e and y rl = 3 84400 km, 

t v = 88587,38 km/, day

While the unperturbed orbit is an ellipse with M as the focal

point, the perturbed orbit must be a circular orbit around M (i.e. r=
0

const)., where angled(= angle between r and r
1
) is constant = 60. In

the following table, according to equation system (10) a step width of

10-6 day/km in s was used in the computation. This means approximately

70 steps per revolution of the mobile:

One revolution lasts approximately 27_days. - Table 1 -

Zeit (Tage) gest6rte Bahn . ungest6rte Bahn
1 - *q- A 2 ?. ' t tgp

0 14776336' 1,7320508 .14776336 1,7320508
1,5376000 14776336 17320508 14798660 1.7316929
3,0752000 14776336... 1,7320509 14863020 1,7292456
4,6128000 14776337 · 104 1,7320500 14961850 ·In 1,7029132'
6,1504001 14776338 - 1.7320508 15083434 1.7114590
7,6880003 14776339 1' - ,7320507 15213023 1.6943905
9.2256004 14776340 1,7320504 15335418 16720128

1 t m ..- . . . . - .

1= time (days). 2= perturbed orbit. 3= unperturbed orbit.
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In this case a comparison with the calculation according to

equation system (11) is particularly simple; since the vehicle moves in

a circular orbit, the root in (7) is constantly equal to 1; thus the s

in (10) and (11) is the same. Thus, for the same step width there re-

sults in s the same step width in time. Indeed, a computation according

to (11) yielded exactly the same numbers as in Table 1. One integration

step requires approximately the same machine time in both cases. Cal-

culations with different step widths yielded the result that the varia-

tion still present in the perturbedris not due to the inaccuracy of the

integration, but is due to the error in the initial position and velocity

of the vehicle.

2nd Example

Ejection of the vehicle from the central body earth in the x3 direction. 

Perturbationbody: moon in circular orbit, M = earth mass, m =

= moon mass, r1 = 384 400 km. apogee of the vehicle at X2 = 200 000 km.

Step width 10-6 day/km. After 3.64 days the mobile returns approximately

to the starting point.

Table 2

Maximum deviation from the Maximum approach to the
unperturbed orbit Center of the earth

in first revolution 180 km. after the first revolution 1/8km.

in second revolution 230 km. after -be second revolution 1/3km.

(Each time at the return from the
apogee to the earth)

In spite of the very close approach to the earth, no considerable

integration errors occur due to the regularization in the vicinity of

earth, as is proved by calculations with different step widths.
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(Details with respect to step widths in IV).

III. Perturbation By the Flattening of the Central

Body

The gravitationpotential of the central body, the equatorial plane

of which is assumed to be in the xl, x
2

plane,.,shall be a function only of

the geographical latitude, i.e. the potential has the following form

r ( i£2t ( r ) Pt (-)
where

R = equator radius of the central body.

Pk= Legendre polynomials (14)

Jk= flattening coefficients.

The values of Jk can be determined from the orbits of the

satellites circling the earth; one of the latest calculations (up toC

J ) can be found in /4/.

If the perturbation potential is designated by V 

M r PI (X (15)

the perburbation acceleration is obtained as a gradient of V and the

transformed equation of motion corresponding to (5) reads

,+ nQu, ' oV, v, - v
4 du- 2- (16)
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with

Vso = perturbation potential at time t = 0.

Since the perturbation force can here be derived from a poten-

tial and the work can thus be expressed as a difference of potential, a

system of only 9 differential equations is obtained in formulation (9);

(6) does not have to be considered, since it no longer contributes to

economy in integration.

The vehicle is again entered into the program in terms of its

initial velocity, the central body is entered with its mass, the equ-

ator radius and the coefficients Jk.

3rd Example

Calculation of the rotation of the nodal-point and of the perigee

point in the orbit plane and comparison with the corresponding analytical

formulas.

For reasons of simplicity, only the flattening coefficient J2

was assumed different from O:

J = 0.00108292 ( = Value for earth, see /4/), J = 0 for k > 2.
2 k

In the same manner, the values of the earth were inserted for M

and R.

a) initial values of the vehicle: radius vector rA = 9000 km,

velocity v = 579827.58 km/day, perpendicularly to r . From

this results an eccentricity of e xz0.0146.

2
Disregarding e {and higher powers of e (compare/5/, p. 75), the
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formula, adapted for this case, for the secular rotation of the nodal

is dD Co 3 dD (17)
dt -cossr4v(1- 3) J M R' , An d T2 dt

L = angle between vA and the equator is plane, T= time of revolution of

the vehicle.

A comparison for 3 different inclinations L yielded

Table 3

cost

0,70710678
0.08623253
0.99962562

AQ. a&c. (17)

- 0,003521
- 0,000429
- 0,004978

Adwith Proqram
(50, steps/revolution -
- 0,00352 1. - ;
-0.00043 "
- 0,00494 

c) Initial values of the vehicle: rA = 36 000

day, perpendicularly to rA. This results in the

a).

km, vA = 289913.79 km/

same eccentricity as in

A comparison for ': = a=/4 ydelded

Table . 4

4D ard&(l?) dnwith P-roqramn
(50 Ste p /revo1utiorn

--0,0002204 - 0,000220

.,,,·'l ." " (':

( . I )

I
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c) initial values of the vehicle as in a). According to /5/

a a J-(5 cot - 1) v ( 3 e) J3M R2. (18)

is obtained for the rotation of the perigee in this case.

Since it is difficult to read this rotation from Cartesian coor-

dinates for the relatively large step width, only the Two cases

were calculated. A comparison with (18) yielded cosign L.

Table 5.

1.

i cs -' :. ao nach (18)

i1,,: - . 0,00995
]I:.o; . {-0,00248

2.

4co mit Programm

0,0098
- 0,0026

1= according to. 2= with program.

The deviations are in accordance with the reading accuracy of the

perigee from the Cartesian coordinates.

VI. Comparison with the Encke Method

The Encke Method is also a perturbation method; however, it

works without regularization. Starting from (4) and (12) the defferen-

tial equations

M_ _ a,) r( , 3 + 3 (19)%.rsl rI L) 
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are obtained for coordinate perturbations 4d/r - r , if r designates the

perturbed and r the unperturbed orbit. As above, the subscript 1 refers to

pertubation body. Equations (19), written as a system of 6 1st - order

differential equations, yields

M(o Ireo+ ) d- md ( ro+ dr - r,+ T)

(20)

In the program for the Encke method, this system is again integrated

according to RUNGE-KUTTA (4th order). The step width in time t is

either: (21) kept constant,

or: (22) varied in such a way that the

corresponding step width in s is constant,

or: (23) automatically regulated by the error

in integration.

Determination of the unperturbed vehicle orbit r is conducted according
o

to the method of STUMPFF /6/; the equation coorexponding to the Kepler

equation, occurring there, is solved iteratively.

Comparison of the machine times for one integration step:

Table 6
Encke 0.2 Sec

KS method (with (10)or 0.6 Sec
(11)
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4th Example

Initial location and initial velocity of the vehicle: x = 0,

y = 0, z = 10000 km, v = 0, v = 750000 km/day, v = O, central mass

= moon in curcular orbit around the earth at a distance of 384400 km.

These initial conditions result in a very eccentric orbit ( e =

= 0.94); it is thus to be expected that the example speaks in favor

of the regularizing KS method. The time at which comparison is made is

t= 3.1841455 days, i.e. after a little more than one revolution of the

vehicle.
Table 7

,i% t Method NIo.f step widtn x
_I__ S't*p ds ori diorl

Y x

KS With 2 ds = 2.10 60,00 35379,12 - 33888.55
(10) Or[(1i) 8 5.10- 80.98 35400,52 - 33911,38

' 40 - 1.10-8 80.99 35400,52 - 33911,34
200 , 2-10-' 80,99 35400,52 - 33911,34

Encke 16 dt = 0,2 26.47 62365,72 - 37286,08
mass (21) 64 ' 0,05 15,58 22144,64 - 36560,63

319 0,01 81,03 35439,95 - 33960,81
1593 0,002 80,99 35400.74 - 33911,40

Encke 8 ds - 5-10-6 0,35 49464 46 - 4029.43
mass (22) 40. 110-6 81.06 35432,85 - 33994,81

200 2.10-7 80,99 35400,85 - 33911,42
800 5 -10-8 80,99 35400,52 - 33911.35

Encke 46 0,0047 <do <0,152 81,00 35404,30 - 33915,00
mass (23) 103 0,00119 <dt <0,152 80,99 35400,64 -33911,33

.272 0,00059 < dt < 0,038 80,99 35400,50 - 33911,35
356 0,00040 < dt < 0,025 80,99 35400,52 - 33911,35

As can be seen here, the Encke method') with constant step.

width in t (21) is exceedingly poor: with 1593 steps it is still less

accurate than the KS,!method with g steps. Within the scope of the

Encke methods, that with the automatic step-width adaption (23) is the

best; this one must therefore be compared with the KS method:

,<. ,!

' l?

| !; 

0>.

I

I1,1

b .

t
f\]

s,I



15.

Table 8

1. Accuracy in x,y,z, 2. KS method 3.
number of steps calculation time

4. Encke method with (23) number of steps

l-.Genauigkeit 2. KS-Methode 3. 
in x, y. * Anzahl Schritte . Rechenzeit

: 0.1 .8 4,8 sec
: 0,01 40 24 sec

5. calculation time

4.Encke-Methode mit (23) 5. \ I
Anzahl Schritte . RechenzeitI

103 20.6 sec
356 71.2 sec

Concerning the last column of Table 8 it must be remarked that

the calculation times are in reality still approximately 20 to 30

percent greater, since for the step number only those steps are counted

which were used for integration; in the case of the automatic step-

width adaptation, Runge-Kutta steps are in addition) required, which only

serve-for testing of the accuracy.

5th Example

InitialLlocation and initial velocity of the vehicle: x = 0,

y = o, z = 75000 km, v = O, v = 200000 km/day, v = O. Remaining

data as in example 4.

Under these conditions the vehicle almost describes a circular

orbit (e = 0.007); thus the Encke method is preferable here. Time of

comparison is t = 3.0176050 days, i.e. after approximately 5/4 revol-

utions of the vehicle.
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1. Method

2. number steps

3. step width ds or dt

4. KS with (10) or (11) Table 9.

5. Encke with (21)
13

x.. h Methode 2. Anzahl 3 Schrittweite
Schritte ds bzw. dt

4. KS mit 2 ds - 2-10-'
(10) oder (11) 8 5.10-6

40 1 10 - --
200 2-10-7

5j Encke -16 d- = 0,2 :'
mit (21) 61 0,05

.302 0,01
1509 0,002

Since the mobile orbit is almost

force has always approximately the same

example the Encke methods with (22) and

with constant step width in t (21).

x y z

-6,31 75162,85 -7502,45
4,37 75171,71 - 7510.35
4,34 75171,72 - 7510,34
4,34 75171.72 - 7510,34
4,33. 75173,26 - 7508,02
4,34 75171,72 - 7510,33
4,34 75171,72 - 7510,34
4,34 75171,72 - 7510,34

a circle and the perturbation

order of magnitude, in this

(23) are not better than those

As can be seen from Table 9,,fewer steps are required for the

same accuracy with the KS method than with Encke in the case of the

circular orbit: 16 steps of the second method are considerably less

accurate than g steps of the first. The ratio of the step numbers for

the same accuracy can be given at approximately 1 : 4. If the machine

times for one step (see Table 6) are also considered, the Encke method

-thus, even in the case most favorable for it, tends to be inferiorn8 the

KS method.

A
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